Đặc trưng Sao_lùn_trắng

So sánh sao lùn trắng IK Pegasi B (ở giữa), IK Pegasi A (trái) và Mặt Trời (phải). Sao lùn trắng này có nhiệt độ bề mặt vào khoảng 35.500 K.

Nhiều sao lùn trắng có kích thước xấp xỉ Sao Hoả khoảng 100 lần nhỏ hơn Mặt Trời. Chúng có thể có khối lượng xấp xỉ Mặt Trời vì thế chúng rất đặc. Cho là cùng một khối lượng vật chất như Mặt Trời, chứa trong một dung tích của một hình cầu đường kính nhỏ hơn 100 lần, vì thế thể tích là 100³=1.000.000 lần nhỏ hơn Mặt Trời và do đó mật độ trung bình của vật chất trong các sao lùn trắng là 1.000.000 lần lớn hơn mật độ trung bình của Mặt Trời. Các vật chất ở trạng thái như vậy được gọi là suy biến. Trong những năm thập niên 1930 sự giải thích được cho là do hiệu ứng của cơ học lượng tử: Trọng lượng của sao lùn trắng được duy trì bởi áp suất của các điện tử (sự suy biến của điện tử), nó chỉ phụ thuộc vào mật độ mà không phụ thuộc vào nhiệt độ.

Nếu làm biểu đồ so sánh độ sáng (tuyệt đối) với màu sắc đối với các sao đã quan sát được (biểu đồ Hertzsprung-Russell), thì không diễn ra mọi tổ hợp của độ sáng và màu sắc. Có một số sao ở trong khu vực độ sáng thấp-màu nóng (sao lùn trắng), nhưng phần lớn các sao nằm trong một dải, gọi là chuỗi chính. Các sao khối lượng nhỏ nằm trong chuỗi chính là nhỏ và nguội. Chúng được nhìn thấy có màu đỏ và gọi là sao lùn đỏ hay là sao lùn nâu (nguội hơn). Các dạng này là loại thiên thể hoàn toàn khác với các sao lùn trắng. Trong sao lùn đỏ, cũng như trong các sao của chuỗi chính, áp suất cân bằng trọng lượng là sinh ra do chuyển động nhiệt của khí nóng. Áp suất tuân theo định luật của khí lý tưởng. Một loại khác của các sao được gọi là khổng lồ: các sao trong phần độ sáng cao của biểu đồ độ sáng-màu sắc. Chúng là các sao bị nổ tung bởi áp suất bức xạ và là rất lớn.

Các sao lùn trắng là rất nóng; vì thế chúng bức xạ ra ánh sáng trắng. Phần nhiệt này là phần còn lại của nhiệt sinh ra do sự sụp đổ của sao và nó không được bổ sung thêm (trừ trường hợp chúng thu được vật chất từ các sao gần đó), nhưng do bề mặt bức xạ rất nhỏ nên chúng duy trì được sức nóng trong một thời gian dài.

Cuối cùng, sao lùn trắng sẽ nguội đi và trở thành sao lùn đen. Các sao lùn đen, trên lý thuyết, là các thực thể nhiệt độ thấp và bức xạ yếu trong quang phổ vô tuyến. Tuy nhiên, vũ trụ chưa tồn tại đủ lâu để bất kỳ sao lùn trắng nào nguội đến mức trở thành sao lùn đen.

Rất nhiều sao lùn trắng trẻ tuổi ở gần đã được phát hiện như là nguồn bức xạ các tia X mềm (tia X có năng lượng thấp); các quan sát bằng tia Xtia cực tím cho phép các nhà thiên văn nghiên cứu thành phần và cấu trúc của lớp khí quyển mỏng của các sao này.

Sao lùn trắng không thể có khối lượng vượt quá 1,4 khối lượng Mặt Trời, giới hạn Chandrasekhar [2], nhưng có một cách để chúng vượt qua giới hạn này. Nếu sao lùn trằng bay thành cặp với một ngôi sao thông thường khác, nó có thể hút vật chất từ sao đôi đồng hành. Vật chất hút được rất chậm và ổn định. Khối lượng của sao lùn trắng tăng lên cho đến khi vượt qua giới hạn Chandrasekhar, từ điểm đó áp suất suy thoái không thể duy trì được sao. Nó tạo thành dạng siêu tân tinh loại Ia và là mạnh nhất trong các siêu tân tinh.

Trong một số trường hợp, vật chất hút từ sao đồng hành chứa nhiều hiđrô, gây ra phản ứng hạt nhân nổ bùng ở dạng yếu hơn siêu tân tinh, gọi là các vụ nổ sao lùn trắng. Các vụ nổ này chỉ xảy ra ở vỏ chứa các vật chất mới hút vào, không ảnh hưởng đến lõi bên trong sao lùn trắng, và có thể lặp đi lặp lại nếu vẫn có dòng vật chất nhiều hiđrô chảy đến.